
 – Page 1 / 8– 

DCal — Register — 001 

Author: Brian Cantwell Smith Posted: October 26, 2008 
URL: http://… Last edited: October 26, 2008  

I • Prefatory 

A. I have started working on the calculus to underlie Clapboard. This document is intended to be 
something like a blog or wiki entry. Until it is clear what term to use, I will call it the “DCal regis-
ter.” It is intended to be an occasional, running set of comments on issues, design decisions, 
opinion pieces, etc. I might try to put them on the server with blog software (MovableType, 
WordPress—thoughts?). But I don’t want to wait on getting content out until that is decided. 

B. For the moment, therefore, I’ll use my standard notation/skeleton styles in Word, and post 
these as PDFs or something on the AOS/Clapboard wiki. 

II • DCal 

A. I think we need (somewhat formally) to split the overall project into two parts: 

1. Clapboard: the coordinating infrastructure & system for discursive materials; and 

2. Calculus: the calculus on which I would like Clapboard—and a myriad other systems— to 
be built. 

B. It seems to me that both projects should be able to end up being internationally networked, 
open-source projects, with contributions made by people and groups from far-flung places. 

1. The calculus will have to be a tighter, more focused effort; because it is not exactly (at least I 
don’t currently imagine it as being) a system that supports plug-in extensions, etc. 

2. Clapboard, on the other hand, will very much be a system to which people contribute 
modules. 

C. Calculus—name 

1. The problem with ‘fan calculus’ as a name is that it isn’t easily pronounceable. FCAL etc., 
aren’t very pleasing. If it is to fly, I think we have to have a shorter (max 2 syllable), pronounce-
able moniker, 

2. We’ve called the modules we’ve imagined for Clapboard “Dancing with … ”. E.g.: 

a. Dancing with Documents (which I am working on) 

b. Dancing with Bibliographies (Jun & Alex Lamey) 

c. Dancing with Email (who is doing this?) 

d. … etc. 

3. That suggests we might use “dancer”, or something, so that the “dancing with” modules 
would follow naturally. But some reasons against this: 

a. The “Dancing with … ” modules are really Clapboard modules, not modules of the cal-
culus per se; 

b. According to Jutta, ‘Dancer’ as the name of a programming language or system is taken 
(by people with McLuhan program ancestry, oddly enough). 

4. Instead, therefore, I have provisionally been using DCal, for “descriptive calculus”. One could 
write this “decal”, which is how it would be pronounced, though decals (“designs prepared 
on special paper for transfer to another material, such as glass, porcelain, or metal”) isn’t ex-
actly a term of grace or gravity. 



Brian Cantwell Smith DCal Register — 001 2008 · Oct · 26 

 – Page 2 / 8– 

5. So for now I will spell it “DCal—until or unless someone suggests something better. 

D. Principles 

1. Below I will set out an initial (& provisional) list of 14 principles that DCal’s design will be 
based on. 

a. They are deadeningly abstract. I'm not sure what that means. 

b. They are also unordered. They should be grouped in some way; but before trying to do 
that I want to let the sit a bit. 

c. There are also probably a bunch more than should be articulated. But they will be a 
start. 

2. Fans 

a. What’s missing in the principles is any description at all of the fan stuff (fan-ins/fan-outs, 
abstraction, identity, etc.)—which was supposed to be the foundation of all of this. 

b. I’m not currently sure what to think 

i. Whether the fans generate these principles, if I could state them correctly;  

ii. Whether these principles generate the fans; 

iii. Or whether they are independent (which seems unlikely) 

iv. I guess what I think is that the fans are a possible way of meeting principle #1, of per-
spectival identity. 

c. There is also the question of whether—to caricature the disagreement between Steve 
and me—the issue of going “up & down” or “across” ties into this (i.e., should be a prin-
ciple, or identified as a principled option, or something like that), or is a style of using 
DCal, or what. 

d. Tai!1 

E. Perhaps my main conclusion, from starting to work on DCal, and spending some time articulat-
ing these principles, is how daunting this project is going to be. Fair enough; I shouldn't be sur-
prised. But I've been sobered but how I don’t have consistent vocabulary established (re con-
tent, meaning, use, interpretation,, etc.—though cf. my reactions to Israel & Perry’s excessive 
neologisms for having certain parameters tied down). I don't yet know how the abstraction stuff 
is going to go. And so on. This is going to take work. 

F. Still, I feel as if I can imagine DCal. 

1. When all is said and done, and if we do it right, I feel as if I will be able to say: “Yeah, that is 
exactly what I had in mind.” 

2. And I won’t be wrong. It is just a question of rendering it external & explicit … 

G. So to the principles, in a moment. But first some comments on calculi in general (why this pro-
ject is important). 

III • Calculi 

A. Intro 

1. Foundational calculi have played a crucial role in the development of science. 

2. The differential calculus was critical to the development of physics; logic to the study of rea-
soning & entailment; algebra to the arithmeticisation of geometry; etc. They are not “empty 
vehicles”, in other words; they tailor (shape, encourage, restrict) imagination in tremen-
dously consequential ways. 

3. Getting a calculus “right” is hugely beneficial in allowing us to register appropriately, and 

                                                   
1My ubiquitous marginalia & note inscription for “think about it!” 



Brian Cantwell Smith DCal Register — 001 2008 · Oct · 26 

 – Page 3 / 8– 

thereby come to understand, diverse subject matters.2 

4. What it is to be “right” (better or worse) is epistemologically & ontologically subtle.3 

B. Ontic commitments 

1. In terms of ontic/metaphysical commitments—in how they register or allow registration of 
the world—calculi effectively make or impose a 3-way distinction among:4 

a. Kernel Content: What is embodied or “built in” to the calculus itself—and can therefore 
be assumed to be true (or at least claimed) or all subject domains described in it; 

b. Constructed Content: What is then “said” in the calculus—in specific descriptions, theo-
ries, and claims; and 

c. Prohibited Content: What is effectively “disappeared” or removed from the discussion, 
in virtue of falling outside (a) & (b), because it “cannot be said” (violates kernel assump-
tions in some way). 

2. One way to group these is to think of it as a 2-way distinction, between 

a. What can be said—which in turn breaks down into 

i. What is said implicitly or automatically, as it were, in virtue of the calculus’ inherent 
structure—i.e., category (a); and 

ii. What is said explicitly—category (b); 

b. What cannot be said—category (c)5 

3. Discussion 

a. What is “built in” will typically be embodied in (i) syncategorematic structures & opera-
tions, and/or (ii) various primitive symbols & operators. We call such characteristics 
kernel (rather than primitive or syntactic), and thus speak of the kernel (ontological) 
commitments embodied in its structure. 

b. Thus the differential calculus makes a kernel commitment to the fact that the regularities 
it can be used to express will be formulated as derivatives & integrals of—usually tempo-
rally—dependent measure variables. Even purely mathematical calculi without obvious 
concrete subject matters, such as algebra & set theory, still typically embody specific ad/or 
particular kernel commitments.  

c. What is “said” in the calculus—i.e., the “meaning” or “content” of its descriptions—we 
will call constructed commitments. 

d. The net registration of the world embodied in a set of DCal structures will consist of its 
kernel & constructed commitments.6 

                                                   
2Cf. Newton’s early work on a calculus based on the radius of curvature of a function, at a given value, as a basis in 
terms of which to frame the laws of motion—a project that didn’t work out very well. The shift to the less-
geometrically evident notion sof slope was radically more congenial to the framing of the world’s physical regu-
larities. 
3 It of course depends on the purposes for which the calculus is needed or used. 
4Calculi are thus a kind of language, though I make no claim here as to what kind. Among other things, calculi 
are clearly more “formal” than natural languages, implying that the divide between “the language itself” (its ker-
nel commitments) and “what is said in the language” (its constructive commitments) is sharper than in the natu-
ral case. Note, however, that as with everything, what constitutes “DCal itself” versus an instantiation of DCal, ex-
tended with various constructed structures & commitments, is not an intrinsic matter; what is the case will de-
pend on how the various systems are respectively registered (including the denotation of the name ‘DCal’, which 
again is not fixed by the system’s design). 
5Cf. the “impossible zone” in Haugeland’s “Truth & Rule-Following.” 
6As a teenager, I was intrigued by the division of labour between the design of the differential calculus and the 
formulation of the laws of motion within it. As a freshman, I asked my physical professor what fraction of New-
ton’s brilliance he would allocate to the two aspects of the development of classical mechanics & dynamics. He 
asked what I thought; and I said “90% for the calculus; 10% for the laws of motion.” Not really a serious remark, 
of course; but the intrigue remains, and I might stand by the higher ranking of the formulation of the calculus. 



Brian Cantwell Smith DCal Register — 001 2008 · Oct · 26 

 – Page 4 / 8– 

C. Design 

1. Common use of a calculus helps one compare and contrast divergent claims or registrations 
expressed within it. 

2. Sciences (such as contemporary syntactical linguistics) in which there is not a common calcu-
lus, with each theory then being expressed in its own formalism, make such comparisons 
vexatiously difficult. 

3. I take judicious allocation of ontic commitments across the kernel/constructed divide to be one 
of the most important normative criteria on a calculus’ worth. Excessively general calculi 
(with little kernel structure & commitment) provide the theorist with no help in registering 
the world. Conversely, calculi can constrain imagination to regularities expressible in their 
terms; theories or suggestions that violate their kernel commitments can be difficult to 
communicate or express, often leading to misunderstanding.7 

D. Examples 

1. The following 5 calculi are (±) among the most important to have been developed to date: 

a. Algebra 

b. Differential calculus (built on top of algebra) 

c. Set theory 

d. λ -calculus 

e. Formal logic (propositional, predicate & quantificational)  

2. Some mathematical formalism & systems (such as dynamical systems theory [DST]) receive a 
lot of development for use as a framework in terms of which to register phenomena, but 
aren’t themselves calculi (DST uses algebra & the differential calculus) 

3. Another set of calculi—or anyway they might be considered as such—are the raft of pro-
gramming languages that have been defined over the last several decades. They are systemi-
cally different, however, in that what is (formally) defined is what happens, rather than what 
they mean.8 

IV • Mandate 

A. Why do we need a new calculus? 

B. Oddly enough, I think I am so close to the situation that I am not yet in the best position to 
formulate an answer. But my basic sense is that no calculus, to date, has dealt seriously with ob-
jects or with description. 

1. Algebra and the differential calculus deal exclusively with measure variables; 

2. Formal logic deals with propositions, and in predicate and quantificational form, with predi-
cate holding of objects. But objects are dealt with as unproblematic, singular unities, preëmp-
tively registered. 

3. The objects that computational systems have to deal with aren’t idealized singular unities; 
they are complex abstractions with textured and interlocking identity conditions. 

C. Note: When I abandoned the development of 4-Lisp, in the late 1980s, I did so because I did 
not know how to deal with real-world objects (the original topic of the Mantiq project; 3-Lisp 
was just intended to be a design study en route to Mantiq). One could argue (with only a modi-

                                                   
7In this sense calculi (and perhaps all languages) establish a particularly simple typology of the “domain of com-
prehensibility” within which the possible & the actual can be distinguished from the impossible but conceivable, 
as opposed in term to the inconceivable. 
8The term “meaning” has been appropriated for programming languages, and put into service as a way of indi-
cating what happens. Programming language semantics, however, is not semantics, in my book. So I stand by my 
claim. 



Brian Cantwell Smith DCal Register — 001 2008 · Oct · 26 

 – Page 5 / 8– 

cum of retrospective guile) that the Objects book (O3) was the outcome of a long digression to 
figure out what objects were. So in a sense, this whole DCal project could be viewed as 4Lisp 
redux—though with description, rather than execution, at its heart. 

D. Perhaps the best thing to say for now, however, is that, in my judgment, computational systems, 
or a computationally mediated life, requires a descriptive calculus that meets the 14 principles 
identified below.  

V • Principles 

A. DCal is a calculus of description, designed to satisfy a dozen passel of fundamental principles: 

 Property  Description 

P1) Perspectival 
identity 

· Identity is not taken to be an intrinsic property of anything (including DCal struc-
tures themselves). Rather, descriptions that depend on issues of identity—of 
property & type as well as object or individual—must “apply” individuation cri-
teria as part of their meaning or content. The issue of whether that which is 
registered “satisfies” the relevant identity criteria is part of what determines 
how & whether the description “fits” the world—meaning that DCal descrip-
tions & terms, like sentences in traditional calculi, have “success conditions.” 

P2) Deferential 
semantics 

· in a very broad sense, DCal structures are reminiscent of representations, in that 
containing or conveying information about something else, rather than (except in 
extremely rare cases) themselves being that of which they speak. We say that 
DCal descriptions register their subject matters.9 Although registrations, includ-
ing how they are used, shoulder responsibility for (i.e., are the locus of the 
determination of) how they register their subject matters, and although norma-
tive considerations that stem from this use, it is nevertheless presumed that it 
is the world (i.e., that which they register) that is the truth maker. In this sense of 
being normatively deferential to the world the semantics has a classical flavour. 

P3) Contextual 
registration 

· Descriptions are taken to be arbitrarily contextual (deictic/indexical, relative to 
conceptual scheme, instant of use, etc.,) at arbitrary scale—not just “within sen-
tences” (or other complexes).10 It would thus be natural for a DCal system to 
have structures analogous to such English phrases as I, you, my, today, local, John, 
recently, this, that, etc. 

P4) Dynamic 
registration 

· DCal descriptions can not only be used to register temporal phenomena (i.e., 
be dynamical) but can themselves be temporal (i.e., dynamic). Cf. not only clocks, 
meters, sundials, etc., but rhythmical patterns, oscillations, movements, etc.  

P5) Non-conceptual 
content 

· While some descriptions may register their subject matters in terms of “classi-
cal ontology” (objects exemplifying properties, standing in relations, grouped in 
sets, and arrayed in states of affairs) DCal is not itself committed to such regis-
tration, and supports others as well (such as Strawsonian “feature-placing,” to 
say nothing of measure variables as in the differential calculus). 

                                                   
9No DCal structure, therefore, will be the name of a book, or the length of a list, or the address of a cell 
(though there may be structures that register that name, length, & address in canonical (normal-form) ways. 
10 Cf. Frege 



Brian Cantwell Smith DCal Register — 001 2008 · Oct · 26 

 – Page 6 / 8– 

 Property  Description 

P6) Metaphysical 
Holism 

· Rather than assume that the world is assembled from atomic or elemental 
parts, the background metaphysical assumption underlying DCal semantics is 
that the world is aboriginally whole, and that descriptions register parts of it un-
der normatively-governed purposes of abstraction.11 

P7) Meaning as 
(Partially) Use 

· It is not a kernel assumption that descriptions register independently of how 
they are used, nor that their significance derives wholly from how they are used. 
Rather, use is (in general) viewed as a partial determinate of meaning. 

P8) Registration  · It is traditional to view reasoning as a challenge of selecting and carrying out an 
appropriate (perhaps complex) series of inferential steps based on a presumed, 
classical ontology (cf. P5)—i.e., as determining an arrangement, given a basic set 
of building blocks (or puzzles pieces). DCal is founded on a different view, which 
views the determination of an appropriate registration scheme as an equally (if 
not more important) step, with the reasoning “in that scheme” as simpler. 

P9) Reflection · DCal is reflective as well as recursive, giving the user unprecedented control 
over the structure, operation and interpretation semantics of all described 
(constructed & kernel) structures. A kernel mechanism is provided with which 
to refer to or “mention” DCal structures, operations & interpretations—
though what exactly is thereby mentioned (type, token, meaning, use, etc.) de-
pends on how it is registered. With these reflective capacities, DCal structures, 
operations & interpretations can be overridden at will, providing that such 
overriding can itself (ultimately) be described in kernel terms. 

P10) Fusion · The DCal structural field will appear (implicitly) to fuse, as much as possible, 
structures that “mean” the same thing with respect to the concepts & types in 
terms of which they register their subject matters. More precisely: it will be a 
normative criterion on the structural field to support registering structures 
with respect to identity criteria based on (various kinds of) meaning. [[Does this 
follow from P1?]] 

P11) Formality · In spite of being a well-defined computational calculus, DCal is intended to be 
thoroughly “non-formal” under a variety of meanings of that term. Any attempt 
to develop a set theoretically based model theory for a system implemented in 
DCal (i.e., for a DCal system with substantial constructed content), or to prove 
its fundamental soundness &/or completeness, will be based on a 
misunderstanding. 

P12) Interpretation · It is traditional to view formal calculi as “uninterpreted” systems of marks, with 
issues of semantic interpretation left outside the realm of the calculus per se, 
although in different calculi the kernel operations are typically defined with re-
spect to (something like) a specific interpretation or interpretation schema 
(formal logic being the most extreme, in some peoples’ minds challenging its 
claim even to be a calculus because of its semantic commitments). DCal, in con-
trast, includes (as a kernel constituent) a DCal account of its own interpretation, 
in terms of which kernel operations are defined and reflective facilities de-
scribed. As much as (effably) possible, that is, DCal is intended to embody a par-
ticular ontological/metaphysical view. 

                                                   
11 Except that ‘abstraction’ is not used to mean what it classically means. 



Brian Cantwell Smith DCal Register — 001 2008 · Oct · 26 

 – Page 7 / 8– 

 Property  Description 

P13) Differentiation 

& Abstraction 

· DCal's approach to identity is based on a “fan-in/fan-out” conception of (some-
thing like12) abstraction, in which regions of the world are gathered together 
and taken as unities or singularities for some purposes, and divided into plurali-
ties or registered in other ways for others. Notions of sets vs. their members, 
parts vs. their wholes, abstract entities vs. their concrete exemplars, types vs. 
their tokens or instances, etc., are all characterized as “differentiations” of the 
basic fan-out model. That is: distinctions between and among sets & members, 
parts & wholes, abstract & concrete, types & tokens & instances, etc., will all be 
matters of constructed, not kernel, content. 

P14) Physicality · Notions of locality, accessibility, etc. in DCal (i.e., those relations that can lead to 
things happening in unit time) are based on concrete, physical connectivity & 
connection via effective properties. There is no notion of syntax, per se, but 
rather of (spatiotemporal) concrete immediacy. 

VI • Postscript on Notation 

A. A final note on the general issue of notation. 

B. Lisp 

1. I was always a kind of fan of Lisp’s stunningly simple lexical syntax (with caveats about the 
identity of lexical variables—more on that at another time). But lots of people hated it. It 
was commonly said that ‘Lisp’ stood for “lots of irritating parentheses”. 

2. Some merits of Lisp syntax (imho): 

a. It is dead simple (you can teach it in its entirety in about 20 minutes) 

b. It is trivial for reflection, because there are no complex syntactic types 

c. It can be typed in ASCII, without requiting a GUI interface 

3. Some demerits: 

a. Scoping, though explicitly marked, isn’t psychologically obvious; it can only be easily con-
veyed with proper “pretty-printing” (i.e., indenting) 

b. Even automatically balancing parentheses tricks in editors only partially mitigate the diffi-
culty. 

C. A possible way to improve the situation is the following: 

1. Although we all primarily use character--based input (keyboards, ability to incorporate in text 
files, email messages, etc.), we also all primarily (virtually universally) use bit-mapped output. 

2. If there could be a better way to print structures out, therefore, so that they could be easily 
and transparently read, which relied on bitmapped displays, in a way that could still be used 
by appropriate editors for real-time display and editing, but which didn’t require non-ASCIi 
channels for input, that might ease the situation. 

D. I designed a trial version of such a thing (for Lisp; not for DCal), demonstrated below in a side-
by-side comparison of the 3Lisp reflective interpreter code in the old (lots of parentheses) and 
new (boxed) notation. I’ve started to articulate some rules for display that would “print out” the 
structure lexically indicated on the left into the graphical structure shown on the right—but they 

                                                   
12 Only “something like” because it is classically assumed that “abstract” individuals are not concrete, whereas in 
DCal ontology/metaphysics, all individuals are based on an act of abstraction. Because what is registered is not 
the “abstraction,” but that which is gathered together as a unity, there is no lack of concreteness in the “ab-
stracted” individual. 



Brian Cantwell Smith DCal Register — 001 2008 · Oct · 26 

 – Page 8 / 8– 

are pretty obvious.13 

E. Immediate reaction 

1. My sense is that, for the boxed notation to be usable, the grid lines—like grid & guide lines 
in Illustrator, InDesign, and similar graphics programs—need to be very faint. Otherwise they 
demand attention and chop the text up far too much. 

2. On the other hand, the notation does seem to me to accomplish one goal: immediate visual 
accessibility of scope, without a lot of fancy characters or character patterns (as in HTML). 

3. What do you think? 

F. Comparison 

3Lisp Reflective Processor 

Standard Notation Box Notation 

(define normalize 
   (λ simple [exp env cont] 
      (cond [(normal? exp) (cont exp)] 
            [(symbol? exp) (cont (binding exp env))] 
            [(rail? exp) (normalize-rail exp env cont)] 
            [(pair? exp) (reduce (car exp) (cdr exp) env cont)]))) 

 

(define reduce 
   (λ simple [proc args env cont] 
      (normalize proc env 
         (λ simple [proc!] 
            (if (reflective? proc!) 
                 (↓(de-reflect proc!) args env cont) 
                 (normalize args env 
                    (λ simple [args!] 
                       (if (primitive? proc!) 
                           (cont ↑(↓proc!.↓args!)) 
                           (normalize (body proc!) 
                                      (bind (pattern proc!)  
                                            args!  
                                            (environment proc!)) 
                                      cont)))))))))  

(define normalize-rail 
   (λ simple [rail env cont] 
      (if (empty? rail) 
          (cont (rcons)) 
          (normalize (1st rail) env 
             (λ simple [first!] 
                (normalize-rail (rest rail) env 
                   (λ simple [rest!] 
                      (cont (prep first! rest!)))))))))  

(define read-normalize-print 
   (l simple [level env stream] 
      (normalize (prompt&read level stream) env 
         (l simple [result] 
            (begin (prompt&reply result level stream) 
                   (read-normalize-print level env stream))))))  

 

————————————————•• ———————————————— 

                                                   
13 For old-time Interlisp aficionados, this can be viewed as a 2-dimensional strong extension of Interlisp’s use of ‘]’ 
to end a lot of parenthesized structures. 


